Locomotor adaptations -

Go to content

Main menu

Locomotor adaptations

Mammals > Anatomy Mammals

Mammal tail diversity reflects different functions. 1. A jerboa’s tail is used as a counterweight and balance; 2. A spider monkey’s tail is prehensile and used in locomotion; 3. A narwhal’s tail propels it through the water; 4. A mule deer’s tail can communicate an alarm; 5. A red kangaroo uses its tail as a support while upright; 6. A northern flying squirrel uses its tail as a rudder.

Locomotor adaptations

The musculoskeletal design of the mammalian body has accomodated many diverse means of locomotion, not only in terrestrial environments but also in aquatic and aerial niches. Many mammal species are capable of using several different means of locomotion, but much of the body configuration is determined by the dominant mode of locomotion used by a particular species.

Most mammals that are ambulatory (walking) do so on all four limbs, i.e., they are quadrupedal. Most ambulators are pentadactyl (possessing five digits) and plantigrade (walking on the soles, or plantar surface, of their feet). Pentadactyly is the primitive condition in mammals, although many lineages have reduced this number. Ambulators include bears and baboons. Some ambulators are large. As they approach a ton (0.9 tonne) in weight, adaptations for their large size are a necessity. Such animals are said to be graviportal. They have a rigid backbone and their limbs take on the appearance of a column with each element directly above the one below it. They retain all five digits in a pad that provides cushioning. Elephants are an example of a graviportal mammal. Elephants are not able to run, instead they trot, increasing their speed by walking quickly.

Cursorial locomotion (running) is accomplished in diverse ways. Among mammals there is a range of adaptations and abilities for this way of moving. Many cursors are digitigrade, i.e., their metacarpals and metatarsals are permanently raised above the substrate with only the phalanges in contact with the ground. Often the metacarpals and metatarsals are elongated and the number of digits reduced. For example, in equids (horses), the leg is supported on a single central digit of their mesaxonic foot. Other mammals, such as deer and hyenas, have legs with a paraxonic foot with two toes contacting the ground. Some mammals have one set of limbs that are paraxonic and another set that are mesaxonic.

A number of characteristics allow the generation of high speed in cursory locomotion. Reduction or loss of the clavicle that would impede forelimb movement is one adaptation. In addition, most of the musculature has shifted to the upper limb, and the lower limb has become thinner and elongated. In many cases it is the metacarpals and metatarsals that are the most elongated. In hoofed mammals the number of digits is reduced. The horse is the most extreme example with only a single digit. The elongation of the leg relative to body length produces a longer stride, thereby increasing the speed, which is equal to the length of the stride multiplied by stride rate. Another trait that increases speed is a pliant vertebral column that enables the mammal to place the hind feet in front of the fore feet when running at full clip. At very high speed, all four feet may be simultaneously off the ground. This is seen in horses, greyhounds, gazelles, and cheetahs. Cheetahs can cover a fixed distance faster than any other mammal. They are able to sprint at over 60 mph (97 kph).

Back to content | Back to main menu